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Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502, 2, Allée Camille Soula,
31400 Toulouse, France

(Received 12 January 2003 and in revised form 12 July 2003)

The three-dimensional flow past two identical spherical bubbles moving side by side in
a viscous fluid is studied numerically by solving the full Navier–Stokes equations. The
bubble surface is assumed to be clean so that the outer flow obeys a zero-shear-stress
condition. The present study describes the interaction between the two bubbles over
a wide range of Reynolds number (0.02 � Re � 500, Re being based on the bubble
diameter and rise velocity), and separation S (2.25 � S � 20, S being the distance
between the bubble centres normalized by the bubble radius). The flow structure,
the vorticity field, the sign of the interaction force and the magnitude of the drag
and lift forces are analysed; in particular the latter are compared with analytical
expressions available in the potential flow limit and in the limit of low-but-finite
Reynolds number. This study sheds light on the role of the vorticity generated at
the bubble surface in the interaction process. When vorticity remains confined in
a boundary layer whose thickness is small compared to the distance between the
two bubbles, the interaction is dominated by the irrotational mechanism that results
in an attractive transverse force. In contrast, when viscous effects are sufficiently
large, the vorticity field about each bubble interacts with that existing about the other
bubble, resulting in a repulsive transverse force. Computational results combined with
available high-Reynolds-number theory provide empirical expressions for the drag
and lift forces in the moderate-to-large Reynolds number regime. They show that the
transverse force changes sign for a critical Reynolds number whose value depends
on the separation. Using these computational results it is shown that, depending on
their initial separation, freely moving bubbles may either reach a stable equilibrium
separation or move apart from each other up to infinity.

1. Introduction
Bubbly flows with moderate-to-large bubble concentration (typically from a few

per cent to 20% volume fraction) occur in many natural and industrial processes.
However the current understanding of such flows and the predictive models used
to describe their evolution are far from satisfactory because of the difficulty in
describing direct hydrodynamic interactions between bubbles. Up to now, most of
the numerical investigations devoted to finite-Reynolds-number flows about bubbles,
drops or rigid particles have focused on the case of a single particle. While such
investigations have provided important results concerning the drag, added-mass and
shear-induced lift forces acting on an isolated particle (see e.g. Magnaudet & Eames
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2000), applicability of these results to the description of dispersed flows is limited to
low particle concentrations (typically less than 1–2%), since the hydrodynamic field
about a particle moving close to other particles is modified by the presence of its
neighbours. In particular, direct hydrodynamic interactions are expected to greatly
influence the spatial distribution of the dispersed phase in flow regions where the
particle concentration is significant. This is especially true for light particles and
bubbles, since most of the inertia of the complete system then lies within the carrying
fluid.

Hydrodynamic interactions between particles have been extensively studied in the
context of creeping flow theory, particularly in order to determine the equivalent
viscosity of the suspension (Batchelor 1971, 1972; Batchelor & Green 1972a, b;
Hinch 1977). More recently, Stokesian dynamics (Durlofsky, Brady & Bossis 1987;
Brady & Bossis 1988) has emerged as a powerful technique to compute the creeping
flow generated by a large number of interacting particles. In the opposite limit of
irrotational flow, several investigations based on the pioneering works of Jeffrey
(1973) and van Wijngaarden (1976) have considered the interaction between two
clean spherical bubbles (see e.g. Kok 1993a and references therein). Irrotational flow
is generally regarded as a valid model for bubbly flows in which the bubble Reynolds
number is large enough for the vorticity generated at the bubble surface to remain
confined in a thin boundary layer and a thin wake. The aforementioned studies
in which this assumption was used showed that when a pair of bubbles rises in a
quiescent liquid due to buoyancy, the bubbles are attracted towards (resp. repelled
from) each other when the angle between their line of centres and the vertical direction
is in (resp. outside) the range ]θc, 180◦ − θc[, θc being a critical angle ranging from 35◦

when the two bubbles are in contact to 54◦ when they are widely separated. These
studies also established that the stable position of a pair of rising bubbles is reached
when the two bubbles come in contact, their line of centres being perpendicular to
the rise velocity (van Wijngaarden 1993). Irrotational flow theory was also used by
several authors to compute the evolution of a suspension of bubbles. For instance,
Sangani & Didwania (1993) and Smereka (1993) solved the n-body problem for a
large collection of spherical bubbles moving under buoyancy in a periodic box. The
most important conclusion of these ‘direct’ irrotational simulations is that bubbles
tend to form horizontal clusters at large time, which is not unexpected considering
the results mentioned above for a pair of bubbles. However this conclusion is at
odds with observations, since a large number of experiments have shown that when
a cloud of bubbles rises at moderate or large Reynolds number in a large batch of
liquid otherwise at rest, the bubble distribution tends to be statistically homogeneous.
This experimental trend has recently been confirmed by computations in which some
hundreds of deformable bubbles rising at moderate Reynolds number (typically 10 to
30) evolve freely in a periodic box (Bunner & Tryggvason 2002). The most plausible
explanation for this discrepancy with irrotational predictions is that potential flow
theory has limited capabilities for describing some of the characteristics of flows
about real bubbles whose rise Reynolds number is obviously finite, even though
large. At low to moderate Reynolds number, viscous diffusion of vorticity produced
at the bubble surface is significant and the assumption of irrotational flow is certainly
irrelevant in a significant part of the liquid. Similarly one may expect that if the
distance separating two bubbles becomes small enough, effects of vorticity cannot be
neglected in the gap between them, whatever the Reynolds number. These arguments
suggest that the irrotational description of bubbly flows has intrinsic limitations which
are still to be understood.
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Hydrodynamic interactions at finite Reynolds number were first explored by Oseen
(1927) who considered some particular situations in which two rigid spheres interact
in the presence of small-but-finite inertial effects (see § 4). The corresponding solutions
are obviously not directly applicable to drops and bubbles. Nevertheless the interesting
point is that these solutions predict a repelling force for the case of two spheres settling
side by side. A similar tendency was observed in the numerical simulations of Kim,
Elgobashi & Sirignano (1993). They showed that two rigid spheres placed in a uniform
stream perpendicular to their line of centres are attracted towards each other at large
Reynolds number, while they are repelled when the Reynolds number is lower than
a critical value depending on the separation distance. Similarly, Yuan & Prosperetti
(1994) studied numerically the case of two bubbles rising in line at moderate-to-large
Reynolds number. In contrast with the irrotational prediction according to which
the two bubbles are repelled however large the distance that separates them, they
showed that this separation reaches an equilibrium value corresponding to a balance
between the inertial repulsion predicted by irrotational theory and an attractive wake
effect due to the suction of the second bubble in the wake of the leading one.
Finally, we note that in their full numerical simulations of the motion of a dozen
of deformable buoyant bubbles rising in a periodic box, Esmaeeli & Tryggvason
(1998, 1999) observed that the bubble distribution was more uniform at low Reynolds
number (Re ≈ 1–2) than at moderate Reynolds number (Re ≈ 20–30) where a slight
tendency for horizontal bubble pairs to form was noticed. They also observed that,
compared with bubbles arranged in a regular array, freely evolving bubbles rise faster
at low Reynolds number while they rise more slowly at moderate Reynolds number.

This brief review shows that finite-Reynolds-number effects may significantly
change the structure and evolution of a bubbly flow. In order to clarify the key
role of vorticity and the limitations of irrotational flow theory, numerical solutions of
the full Navier–Stokes equations can be very helpful. As demonstrated by Bunner &
Tryggvason (2002), it is now possible to compute the evolution of some hundreds
of bubbles on a fixed numerical grid. Such computations widen horizons in that it
becomes possible to follow the time-dependent evolution of a complex disordered
system and to compute various statistics of interest. However, properly capturing thin
boundary layers and wakes on such fixed grids is not easy, which is why available
results obtained by these techniques are currently limited to Reynolds numbers of
O(10). Similarly, owing to the limited size of the computational box with respect to
the bubble size, it is hard to capture accurately far-field effects which are crucially
important in the low-but-finite Reynolds number regime at low concentration.

As is well known, provided one restricts the scope of the investigation to much
simpler geometrical configurations, highly accurate results covering a wider range of
Reynolds number can be obtained by using boundary-fitted grids. Results concerning
the axisymmetric flow about two or more particles moving in line were, for instance,
obtained by Tal, Lee & Sirignano (1984) for solid spheres and by Patnaik (1986),
Raju & Sirignano (1990) and Chiang & Sirignano (1993) for droplets. As pointed
out above, Yuan & Prosperetti (1994) considered the case of two bubbles rising in
line. However, despite their intrinsic interest, their results have a limited bearing
because the high-Reynolds-number, in-line configuration is known to be unstable to
lateral perturbations, at least in pure liquids (Harper 1970, 1997; Kumaran & Koch
1993, Katz & Meneveau 1996). Indeed Kok (1993b) and Duineveld (1994) studied
experimentally the evolution of two high-Reynolds-number bubbles rising in line in
ultrapure water and confirmed that the pair of bubbles tends to rotate in order to
line up horizontally. Hence it seems that the most important configuration to be
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Figure 1. Sketch of the flow configuration and coordinate system.

studied in detail using a boundary-fitted technique is that where the two bubbles
rise perpendicularly to their line of centres. To the best of our knowledge, the only
detailed computations concerning this fully three-dimensional configuration are those
of Kim et al. (1993) with two rigid spheres. In their study, the particle Reynolds
number was varied between 50 and 150 and the distance between the two particle
centres ranged from 3 to 50 particle radii.

The aim of the present study is to perform a similar investigation in the case of
two clean spherical bubbles, i.e. two spheres under a shear-free condition instead of
a no-slip one. The finite-Reynolds-number hydrodynamic interaction of two particles
moving perpendicularly to their line of centres has several crucial consequences for the
particle trajectories. In particular, the drag force is expected to be modified compared
to the case of an isolated particle, and there is a transverse or lift force directed
along the line of centres. We compute this flow past two bubbles by solving the
full Navier–Stokes equations for Reynolds numbers (based on the bubble diameter
and rise velocity) ranging from 0.02 to 500 and distances between the bubble centres
ranging from 2.25 to 20 bubble radii in most cases. The paper is organized as
follows. The governing equations of the problem and the associated dimensionless
coefficients are given in § 2. Section 3 is devoted to a short description of the most
important numerical aspects and to several preliminary tests. In particular, extensive
comparisons between high-Reynolds-number results and irrotational predictions are
reported. In § 4 we briefly derive analytical results for the hydrodynamic forces in
the low-Reynolds-number limit, starting from the results of Vasseur & Cox (1977)
for a pair of rigid spheres. The evolution of the velocity and vorticity fields with the
separation distance and Reynolds number is described in § 5. Section 6 is devoted to
an extensive analysis of the numerical results obtained for the hydrodynamic forces
acting on the bubbles. Concluding remarks are given in § 7.

2. Statement of the problem
Let us consider a pair of spherical bubbles of radius R (figure 1) located at the

respective positions x = −d/2ex and x = +d/2ex in a Cartesian frame of reference
(x, y, z), the associated unit vectors being (ex, ey, ez). The bubbles rise with a velocity
U∞ey in an unbounded Newtonian liquid at rest at infinity. Equivalently, we may
study the problem of a pair of bubbles at rest in a uniform flow U = −U∞ey . When
the wake of the bubbles is stable (i.e. vortex shedding does not occur), the present
problem is equivalent to that of a spherical bubble rising parallel to a symmetry
plane (P in figure 1), and this problem is also symmetric with respect to the plane
z = 0. Consequently, we only need to solve the governing equations in a quarter
of the space, say x � 0 and z � 0. Denoting the velocity and pressure fields by V
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and P , respectively, the incompressible flow about the bubbles is governed by the
Navier–Stokes equations

∇ · V = 0,

∂V
∂t

+ V · ∇ V = − 1

ρ
∇P + ∇ · τ ,


 (1)

where τ = ν(∇V + T∇V ) is the viscous part of the stress tensor Σ = −P I + ρτ , ρ and
ν denoting the density and the kinematic viscosity of the liquid, respectively. The
boundary condition far from the bubbles is

V → −U∞ey for r → ∞, (2)

where r = ‖x‖ with x = xex + yey + zez. On the bubble surface the normal velocity
must vanish, owing to impermeability. Moreover the dynamic viscosity of the gas filling
the bubble is generally negligibly small compared to that of the surrounding liquid.
If we assume in addition that the bubble surface is clean, i.e. free of any surfactant
or contaminant, the matching of the shear stresses across the bubble surface reduces
to a shear-free boundary condition for the liquid. Hence the boundary conditions at
the bubble surface are

V · n =0
n × (τ · n) = 0

}
for r = R, (3)

where n = x/‖x‖ is the outward unit normal to the bubble surface.
The steady solution of the problem depends upon two characteristic parameters,

namely the Reynolds number Re and the non-dimensional distance S, defined as

Re=
2RU∞

ν
, S =

d

R
. (4)

In the present work Re is varied between 0.02 and 500 and most of the computations
concern separations ranging from S =2.25 to 20 (note that S = 3 corresponds to a
pair of bubbles separated by a gap of one bubble radius, whereas the case of two
bubbles in contact corresponds to S = 2). Clearly, the assumption that the bubbles
remain spherical implies that the Weber number We= 2ρRU2

∞/σ (σ being the surface
tension) is small compared to unity. In a high-surface-tension liquid like pure water, it
appears reasonable to neglect the deformation resulting from non-zero Weber-number
effects up to Reynolds numbers about 250.

As stated in the introduction, we are particularly interested in obtaining the total
force acting on the bubble. This force may be split into its drag component FD (i.e.
its component antiparallel to ey), and its lift or transverse component FL parallel to
ex . We thus define

FL = ex ·
∫

Γ

Σ · n dΓ , FD = −ey ·
∫

Γ

Σ · n dΓ , (5)

where Γ denotes the bubble surface. The results concerning these forces will be
expressed in terms of the dimensionless lift and drag coefficients CL and CD obtained
by dividing the corresponding component of the force by πR2ρU 2

∞/2. Moreover we
shall sometimes separate the contribution due to pressure effects from that due to
the normal viscous stress. Hence the lift coefficient will be split into the pressure
contribution CLp and the viscous contribution CLµ. Note that in the subdomain x � 0,
a negative (resp. positive) value of the lift coefficient corresponds to an attractive
(resp. repulsive) force.
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3. Numerical method and tests
3.1. The JADIM code

The computations reported below were carried out with the jadim code described
in previous publications (Magnaudet, Rivero & Fabre 1995; Calmet & Magnaudet
1997; Legendre & Magnaudet 1998). This code solves the three-dimensional unsteady
Navier–Stokes equations written in velocity–pressure variables in a general system of
orthogonal curvilinear coordinates. The discretization makes use of a staggered mesh
and the equations are integrated in space using a finite volume method with second-
order accuracy, all spatial derivatives being approximated using second-order centred
schemes. Time advancement is achieved through a Runge–Kutta/Crank–Nicolson
algorithm which is second-order accurate in time, while incompressibility is satisfied
at the end of each time step by solving a Poisson equation for an auxiliary potential.
A point to be noted is that the computational grids used here (cf. § 3.2 and figure 2)
are highly curved near the bubble. Thus the curvilinear source terms involved in the
momentum equations have a significant influence in these regions, which makes a
correct discretization of these terms crucial for the accuracy of the results. To reach
this goal, a specific procedure allowing us to ensure that these curvilinear terms do
not create artificial sinks or sources of momentum in the discrete equations is used
(see Legendre & Magnaudet 1998).

3.2. The orthogonal grid

Most of the previous studies dealing with the interaction of two droplets or particles
solved the Navier–Stokes equations in a non-orthogonal coordinate system. We prefer
to use orthogonal coordinates because this choice reduces the number of additional
terms involved in the momentum equations and makes the prescription of boundary
conditions (3) straightforward. Moreover, accuracy is more easily guaranteed when the
coordinate lines are orthogonal. For the problem considered here, such a coordinate
system may be obtained by using bispherical coordinates, as employed by Yuan &
Prosperetti (1994). However, the corresponding coordinate lines do not form an outer
boundary with a smooth and simple shape, making the far-field boundary conditions
difficult to impose.

We tried several different grid systems, including that obtained by rotating about
the x-axis the two-dimensional grid built on the streamlines η = const. and the
equipotential lines ξ = const. of the potential flow around a cylinder located near a
plane (Milne–Thomson 1968, p. 185). It turned out that obtaining grid-independent
results in both low- and high-Reynolds-number situations with this type of grid was
quite difficult. Consequently we moved to the grid system shown in figure 2. A plane
grid is first obtained by inverting the equations defining the streamlines η =const.
and the equipotential lines ξ = const. of the potential flow generated by two circular
cylinders moving in line along the x-axis. Then the three-dimensional grid is generated
by rotating the plane grid about the x-axis with an angle φ. The (ξ, η, φ) grid used in
the computations reported below is made of (N +Nb + Nξ )×Nη × Nφ nodes (figure 3).
Here N is the number of nodes located between the bubble and the symmetry plane
x = 0, Nb is the number of nodes describing one half of the circumference of the
bubble (from x = d/2 − R to x = d/2 + R), Nξ is the number of nodes between the
bubble and the outer boundary in the x-direction, while Nη and Nφ are the number
of nodes along the radial (y) and azimuthal (φ) directions, respectively (keep in mind
that φ varies only from zero to π because the flow is symmetric with respect to the
plane z = 0). The bubble surface is thus discretized with Nb × Nφ nodes in the ξ - and
φ-directions. The outer boundary of the computational domain is a circular cylinder
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Figure 2. Partial view of the grid near the bubble. (a) S = 3, (b) S = 6.
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Figure 3. Definition of the number of nodes in the computational domain.
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Re= 0.1 Re= 300

(a) N CD CL CD CL

5 140.3 0.708 0.147 −0.0666
8 140.2 0.709 0.147 −0.0659

10 140.2 0.709 0.147 −0.0657
12 140.2 0.709 0.147 −0.0656
15 140.2 0.708 0.147 −0.0656

(b) Nb CD CL CD CL

24 139.1 0.691 0.148 −0.0667
28 140.1 0.710 0.148 −0.0655
30 140.2 0.709 0.147 −0.0657
36 140.5 0.709 0.147 −0.0649
40 0.147 −0.0649

(c) Nφ CD CL CD CL

16 140.1 0.703 0.149 −0.0663
24 140.2 0.708 0.147 −0.0658
32 140.2 0.709 0.147 −0.0657
48 140.3 0.708 0.147 −0.0657

(d) R∞/R CD CL CD CL

20 0.147 −0.0656
40 0.147 −0.0657
60 141.2 0.729 0.147 −0.0656
80 140.2 0.709 0.147 −0.0656

100 139.8 0.709

Table 1. Effect of the number of nodes on the drag and lift forces: (a) varying the number
of nodes N between the bubble and the symmetry plane (S = 3, Nb = 30, Nφ = 32, R∞/R = 80,
δ/R = 0.01); (b) varying the number of nodes Nb describing the bubble surface (S = 3, N = 10,
Nφ = 32, R∞/R =80, δ/R = 0.01); (c) varying the number of nodes Nφ in the azimuthal
direction (S = 3, N =10, Nb = 30, R∞/R = 80, δ/R =0.01); (d) varying the size R∞/R (thus the
numbers of nodes Nξ and Nη) of the computational domain (S = 3, N =10, Nb = 30, Nφ = 32,
δ/R = 0.01).

of radius R∞ and height R∞ + d/2. Clearly, Nξ and Nη directly depend on R∞ and
on the distribution of nodes between the bubble and the outer boundary. A constant
spacing is used in the φ-direction. In the ξ - and η-directions, we select a geometrical
distribution of nodes ensuring that the length ratio between two successive cells is
less than 1.15 everywhere in the numerical plane (ξ, η). Nevertheless, owing to the
singularity of the mapping (ξ, η) → (x, y) near the poles of the bubble, the length ratio
in the physical plane (x, y) may exceed this value near the iso-ξ lines issuing from the
poles, as may be seen in figure 2. We have already used such mappings in some of our
previous studies (Magnaudet et al. 1995; Legendre & Magnaudet 1998) and found
that the somewhat large length ratio between two successive cells encountered in this
sub-region does not affect the overal accuracy of the calculations. We tested different
numbers of nodes (N, Nb, Nφ) and domain sizes R∞ for each separation distance S and
analysed the effects of these parameters on the the drag and lift forces. As a typical
example, we report these effects for S = 3 in table 1 for both low (Re= 0.1) and high
(Re =300) Reynolds number. The results clearly show that increasing the number of
nodes and the size of the computational domain yields grid-independent results. As
is well known, the smaller the Reynolds number, the larger the artificial confinement
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Re= 0.1 Re= 300

δ/R CD CL CD CL

0.0015 0.147 −0.0664
0.002 0.147 −0.0657
0.004 0.148 −0.0630
0.01 140.2 0.709 0.151 −0.0580
0.015 140,2 0.708
0.02 140.2 0.712
0.04 140.3 0.686

Table 2. Effect of the relative size δ/R of the cells located at the intersection of the x-axis
and the bubble surface (S = 3, N = 10, Nb = 30, Nφ = 32, R∞/R = 80).

effects. Hence we selected R∞/R = 100 for Re � 0.1, R∞/R = 80 for 0.1 <Re � 20 and
R∞/R =40 for larger Reynolds numbers.

Another point to be considered in detail is the effect of the distance δ from the
bubble surface to the first node above it near the singular points x = d/2 ± R of
the x-axis. This parameter was found to be crucial for an accurate description of the
interaction force in the high-Reynolds-number regime, owing to the low magnitude
of this force for most values of S. The reason for this is twofold. First, the grid is
not symmetrical with respect to the plane x = d/2 parallel to the symmetry plane
x = 0 and containing the bubble centre. Therefore numerical errors necessarily induce
an artificial transverse force. Moreover the two cells located near the poles of the
bubble, i.e. at the intersection of the x-axis and the bubble surface, are larger than
those that cover the bubble surface elsewhere (especially in the plane x = d/2) and
are non-orthogonal, thus inducing some inaccuracy in the momentum balance. Hence
reducing δ allows us to reduce both sources of error. According to the results of the
tests reported in table 2, δ/R was set to 0.002 for Re � 10 and to 0.01 for Re < 10.
For instance, figure 2(a) corresponds to a grid with δ/R = 0.002 while figure 2(b)
corresponds to δ/R = 0.01.

Finally, we found that the numerical results are not very sensitive to the numbers
of nodes Nφ and N (tables 1a and 1d). Consequently we selected Nφ = 32 in all the
computations and increased N regularly with the distance d/2 between the bubble and
the symmetry plane. More precisely, the computations reported below were carried
out with N = 5 for S � 2.5, N = 10 for 3 � S � 4, N =15 for 5 � S � 10 and N = 20 for
S > 10.

3.3. Preliminary tests

The capability of the jadim code to describe accurately three-dimensional flows about
bubbles and rigid particles has already been proved (see e.g. Legendre & Magnaudet
1998). Consequently we mainly checked the effects of the grid described above. In
a first series of tests we computed the flow field in situations where the relative
distance S between the two bubbles is much larger than unity (S = 80 for Re < 20
and S = 40 for Re > 20). The lift force must then be almost zero and the drag force
must correspond to that experienced by a single bubble rising in an unbounded fluid.
This test was carried out for several Reynolds numbers ranging from 0.1 to 300. The
values of the drag coefficient were compared with those obtained in our previous
studies (Legendre & Magnaudet 1998) and with the general correlation proposed by
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Re= 0.1 Re= 1 Re= 10 Re= 300

This study, S � 1 161.9 17.4 2.48 0.141
Legendre & Magnaudet (1998) 162.2 17.4 2.43 0.141
Mei et al. (1994) 161.9 17.6 2.48 0.139

Table 3. Drag and lift coefficients for S � 1.

Mei, Klausner & Lawrence (1994), namely

CD =
16

Re

{
1 +

[
8

Re
+

1

2

(
1 +

3.315

Re−1/2

)]−1
}

. (6)

The results are shown in table 3. The difference between results from (6) and our
previous results is less than 1% for all values of Re while the lift force is of the order
of the round-off error. As (6) tends towards Moore’s (1963) and Taylor & Acrivos’
(1964) asymptotic results in the limit of large and small Re, respectively, we conclude
that our numerical predictions for the drag force in the limit of large separations
agree well with known theoretical results.

3.4. Tests in irrotational flow

Solutions for the velocity potential of two spheres of identical radius moving at an
arbitrary angle with respect to their line of centres have been obtained by Miloh (1977)
and Biesheuvel & van Wijngaarden (1982), using earlier results by Jeffrey (1973) and
van Wijngaarden (1976). Once the velocity potential is known, the kinetic energy
may be evaluated and the equations of motion can be obtained though Lagrange’s
formalism. Following van Wijngaarden (1976), the lift coefficient CL is then found in
the form of an infinite series whose first terms are

CL = −6S−4
(
1 + S−3 + 16

3
S−5 + 3

4
S−6 + 15S−7 + 22

3
S−8 + 65

2
S−9 + 767

9
S−10 +O(S−11)

)
.

(7)

For the flow configuration considered here, this lift coefficient is always negative, thus
corresponding to an attractive force. This is because quadrupoles and higher-order
singularities involved in the multipole expansion of the velocity potential combine
in such a way that the downward fluid velocity is larger between the two bubbles
than in the exterior fluid, thus inducing a pressure gradient directed away from the
symmetry plane x = 0. It is worth noting that the series giving CL converges rapidly
for moderate or large separations, typically S � 3. For instance the term proportional
to S−14 contributes less than 0.1% of the total value of CL for S = 3. In contrast, this
term still contributes about 8% of the value of CL for S = 2 and a correct estimate of
CL then requires more than one hundred terms. The modification of the viscous drag
force due to the hydrodynamic interaction between the two bubbles was evaluated
by Kok (1993a), using a global kinetic energy balance ‘à la Levich’ (Levich 1962,
pp. 444–445). In this approach the flow is assumed to be irrotational everywhere
except right at the surface of the bubbles where the shear-free condition generates an
infinitely thin vortex sheet. For two bubbles rising side by side, Kok (1993a) obtained

CD =
48

Re
(1 + g(S)) + O

(
Re−3/2

)
, (8)
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Figure 4. Lift coefficient in the potential flow limit. �, Re= 1; �, Re= 300;
——, equation (7).

with

g(S) = S−3 + 3
4
S−6 + 11

3
S−8 + 1

2
S−9 + 39

4
S−10 + O(S−11).

Hence, compared to the unbounded case, corrections due to the presence of the
second bubble tend to increase the drag force. This is because the interaction results
in a higher strain rate in the fluid located between the two bubbles.

We checked our code against predictions (7) and (8). For this purpose we considered
the results obtained during the first time steps after the flow has being initialized with
a uniform velocity profile far upstream. As vorticity is generated at the bubble surface
by the shear-free condition and is then diffused in the boundary layer and shed in
the wake, its influence is expected to be negligible during the very first time steps
(typically over a period of time T such that T � R2/ν). Indeed, for t = O(T ), we
observed quasi-constant values of the drag and lift coefficients. As shown in figure 4,
the corresponding numerical values of CL follow closely the analytical prediction
(the analytical value was calculated by considering 135 terms in the infinite series
(7)). The difference is less than 2.5% up to S = 6 and increases up to 8% for
S = 20. This difference increases with the separation because the magnitude of the
lift force decreases quickly with S and becomes of the order of the numerical error
for large S. For instance, the magnitude of the lift force corresponding to S =20
is only about 0.02% of the magnitude of the drag force. The drag increase due to
the presence of the second bubble is compared with the analytical prediction (8) in
figure 5. The agreement is found to be satisfactory up to S =5 and deteriorates for
larger separations, owing to the smallness of the effect under consideration. These
comparisons demonstrate the ability of our code to capture properly the irrotational
mechanisms of interaction, even in situations where the resulting effects are much
weaker than the leading-order drag force. Given the above results, we are confident
that the transverse force is accurately predicted, even when the lift coefficient is as
small as 10−4 (S ≈ 17), whereas relative modifications to the drag force of O(10−2) or
more are also correctly reproduced.

To complete this series of tests, we considered the added-mass force acting on the
pair of bubbles when the free-stream velocity −U∞ey varies in time. It is well known
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Figure 5. Relative drag increase due to the interaction in the potential flow limit.
�, Re= 1; �, Re= 300; ——, equation (8).

that if the flow were inviscid, the total force on each bubble would then reduce to the
inertial force

FI = − 4
3
ρπR3(1 + CM (S))

dU∞

dt
ey, (9)

CM being the so-called added-mass coefficient (Batchelor 1967, p. 409). The first
contribution in the right-hand side of (9) represents the force exerted by the outer
flow on the volume of fluid occupied by the bubble. The second part is the added-mass
force which arises because the presence of the bubble induces an acceleration of the
surrounding fluid. In the past decade, theoretical and numerical investigations have
demonstrated that the inertial force experienced by a spherical particle of arbitrary
nature (i.e. a rigid particle, a drop or a bubble) moving in an unbounded flow is
left unaltered by finite-Reynolds-number effects, the value of CM then being 1/2
whatever the relative strength of viscous effects and temporal acceleration compared
to those of advection (see Magnaudet & Eames 2000 for a review). In other words,
the contribution to the total force F(t) acting on the particle that depends directly on
the instantaneous value of the acceleration dU∞(t)/dt is identical to that predicted by
irrotational theory. A mathematical argument explaining the reason for this may be
found in a recent paper by Mougin & Magnaudet (2002a). Even though this result
was obtained in an unbounded flow, the argument is more general. Hence in the
present situation we expect to find an inertial force of the form (9) with CM (S) as
predicted by irrotational theory, namely (van Wijngaarden 1976; Kok 1993a)

CM (S) = 1
2

[
1 + 3

2
S−3 + 3

4
S−6 + 3S−8 + 3

8
S−9 + 27

4
S−10

]
+ o(S−11). (10)

For finite values of S the added-mass coefficient (10) is larger than that of a single
sphere because the flow located between the two spheres experiences a larger accel-
eration compared to the unbounded case. To evaluate the inertial force numerically,
we employed the procedure proposed by Rivero, Magnaudet & Fabre (1991). Briefly,
this procedure consists in determining the inertial force at a given time t1 through
the difference between the total force obtained in two different situations. In the first
of these, the accelerated flow is computed up to time t1 + �t and the hydrodynamic
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(a) Re 0.1 1 10 50 100 300
CM 0.5503 0.5504 0.5502 0.5502 0.5502 0.5502

(b) Ac 0.1 1 10 100 1000
CM 0.5491 0.5502 0.5502 0.5502 0.5502

Table 4. Influence of the Reynolds number and acceleration parameter on the added-mass
coefficient CM . (a) S = 2.5, Ac= 100, varying Re; (b) S =2.5, Re= 300, varying Ac.

CM

2 3 4 5 6 7 8 9 10
S
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0.55
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Figure 6. Added-mass coefficient CM : �, numerical values; —— equation (10).

force F(t1 + �t) is evaluated. In the second computation, the acceleration is set to
zero at t = t1 and the corresponding total force at time t1 + �t , say F′(t1 + �t), is
evaluated. It can then be proved (see Rivero et al. 1991) that the difference F − F′

tends to FI (t1) in the limit �t → 0. We applied this method to the case where the
free-stream velocity varies linearly in time, i.e. U (t) = U0 + αt , where α is a constant
acceleration. We observed that for a given separation S, the variations of the added-
mass coefficient with the acceleration parameter Ac(t) = 2Rα/U 2

∞(t) and Reynolds
number Re(t) = 2RU∞(t)/ν were less than 0.2% (an example of these variations
is given in table 4). These results confirm that added-mass effects are not altered
by viscous effects, even in a bounded flow domain. Figure 6 shows the added-mass
coefficient as a function of the dimensionless separation S. The numerical values
are compared with the analytical prediction (10). The difference is found to be less
than 1% for all separations. As shown by figure 6, the added-mass coefficient rapidly
decreases as S increases, the difference with the value 1/2 for an unbounded flow
being less than 1.2% for S = 5. We finally examined the influence of the acceleration
on the transverse force. According to (9), the inertial force only contributes to the
drag, so that over a short period of time the transverse force should not be altered
when the flow is accelerated. Figure 7 compares the lift coefficient measured in an
accelerating flow with that measured in a steady flow for the same values of the
separation S and Reynolds number Re. The difference is less than 0.8% in all cases,
confirming that no spurious transverse force is created by the code.
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Figure 7. Effect of the acceleration on the transverse force. �, Ac= 100, Re= 300;
�, Ac= 100, Re= 1; �, Ac= 1, Re= 300; �, Ac= 1, Re= 1.

4. Asymptotic solutions in the low-Reynolds-number regime
Before we examine the results of the computations at finite Reynolds number, a

discussion of asymptotic results that may be derived in the low-Reynolds-number limit
is in order, as these results will help in understanding the evolution of hydrodynamical
effects with the Reynolds number and will provide additional indications concerning
the accuracy of the numerical procedure.

The problem of two rigid spheres settling side by side in a stagnant viscous fluid in
the presence of small-but-finite Reynolds number effects was first examined by Oseen
(1927) (see Happel & Brenner 1973, p. 282). Using a somewhat ad hoc approach based
on the Oseen equation, he was able to obtain an expression for the interaction force
and drag correction due to the presence of the second particle in the limit Re � 1,
ReS � 1. The constraint ReS � 1 is satisfied when each particle lies in the outer
(Oseen) region of the disturbance produced by the other particle, viscous effects and
inertia then having a comparable magnitude in the region located near the symmetry
plane of the flow. This problem was later revisited by Vasseur & Cox (1977) using
the more rational and now familiar approach of matched asymptotic expansions. It
is straightforward to extend the result of Vasseur & Cox to the case of a pair of
bubbles. For this purpose let us start by noting that in the low-Reynolds-number
regime, the force acting on a spherical drop of radius R and dynamic viscosity µI

moving in a fluid of dynamic viscosity µ having a uniform velocity u far upstream is,
in dimensional form,

F = 4πRµµRu with Rµ =
2 + 3µI/µ

2 (1 + µI/µ)
. (11)

This is the well-known Hadamard–Rybczynski formula (Clift, Grace & Weber 1978,
p. 33). This formula can be used to obtain the O(Re) approximation of the hydro-
dynamic force experienced by each particle by setting u = −U∞ey + uP , U∞ being the
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rise/settling velocity of the particle and uP a constant O(Re) velocity correction
due to the far-field disturbance produced by the presence of the two particles and
their interaction. When the two particles are sufficiently far apart, the leading-order
disturbance they induce in the far field can be obtained by replacing them by
two point forces of strength f = 4πRµρνRU∞ey located at the particle centres, i.e.
x = ± d/2, y = z = 0. In other words, the leading-order correction to the far-field
velocity is due to the Stokeslet associated with each particle. As the governing
equations for the leading-order disturbance in the far field are nothing but the Oseen
equations, they are linear with respect to both the forcing term f and the velocity
disturbance itself. Hence it turns out that uP is directly proportional to f , i.e. to the
numerical factor Rµ. Coming back to (11) in which Rµ is again involved, we conclude
immediately that, while the Stokes drag corresponding to vanishingly small Reynolds
number (Re → 0) and very large separation (S → ∞) is just FS = −4πRµρνRU∞ey , the
leading-order correction due to finite inertial and interaction effects is proportional to
R2

µ. Using this argument, equations (9.24)–(9.26) of Vasseur & Cox (1977), originally
derived for two rigid spheres (Rµ = 3/2), yield immediately the drag and lift forces
acting on two bubbles of vanishingly small viscosity (Rµ = 1) rising side by side as

CD(Re, Re S) =
16

Re

[
1 +

Re

8
− 1

2

e−Re S/4

S

]
, (12a)

CL(Re, Re S) =
32

Re2 S2

[
1 −

(
1 +

Re S

4

)
e−Re S/4

]
. (12b)

In contrast with the irrotational prediction (7), the lift coefficient is now positive
for all values of Re S, indicating that the two bubbles are repelled from each other.
Similarly, the interaction is found to decrease the drag force, whereas (8) indicates an
opposite effect in the irrotational limit. As will become clear later, these behaviours,
which are at odds with irrotational predictions, are due to the vorticity generated
by the shear-free condition at the bubble surface. The term Re/8 in (12a) is the
counterpart of the well-known Oseen correction 3Re/16 for a rigid sphere (Taylor &
Acrivos 1964). We can formally examine expressions (12) in the limit Re S → 0, i.e. in
the limit case where the distance between the two bubbles becomes small compared
to the dimensionless Oseen radius Re−1. We then obtain

CD =
16

Re

[
1 − 1

2S

]
+ O(1), CL = 1 + O(Re S). (13a, b)

Hence the leading contribution to the lift coefficient becomes constant in this limit.
More accurate results can be derived in the complementary case S � 1, Re S � 1 (i.e.
when the second bubble lies in the inner (Stokes) region of the disturbance due to the
first one) by considering higher-order contributions in the multipole expansion of the
velocity field. This asymptotic limit is examined in the Appendix. In particular (A 5)
shows that in the limit Re → 0 the drag coefficient is then

CD =
16

Re

(
1 +

1

2S

)−1

. (14a)

Furthermore, using techniques similar to those employed by Magnaudet, Takagi &
Legendre (2003), we show (see A 11) that the lift coefficient is in this limit

CL = 1 + O(S−2). (14b)



148 D. Legendre, J. Magnaudet and G. Mougin

0

–0.5

–0.1

–1.5

0

–0.5

–0.1

–1.5

0

–0.5

–0.1

–1.5

0

–0.5

–0.1

–1.5

–6 –4 –2 0 2 4 6 –6 –4 –2 0 2 4 6

U�

V

U�

V

U�

V

U�

V

(a) (b)

Re = 0.1

Re = 1

Re = 20

Re = 300

x /R

Figure 8. Distribution of the vertical velocity V/U∞ in the equatorial plane (y = 0) of the
bubble: , numerical profile: ——, numerical profile corresponding to an isolated bubble;
· · · · · ·, V/U∞ = −1. (a) S = 2.5; (b) S = 4.

Then (13a) appears to match the first-order expansion of (14a) in the limit of large
separations, whereas the leading-order value of the lift coefficient in (14b) matches
that given in (13b).

5. The velocity and vorticity fields
Figure 8 shows the computed profiles of the vertical velocity in the equatorial

plane of the bubbles (y = 0) for two different dimensionless separations (S = 2.5
and 4) and for a wide range of Reynolds number. At high Reynolds number
(Re =300) these profiles clearly show the increased velocity that occurs in the gap
x ∈ [−d/2 + R, d/2 − R] and results in a pressure gradient directed away from the
symmetry plane. The boundary layer can be distinctly seen on both sides of the
bubble. When the Reynolds number decreases (Re = 20), the flow in the gap slows
down and the velocity profile reaches its minimum on the bubble surface. At small
enough Reynolds number (Re = 1 or 0.1), a blocking effect appears in the gap since
the vertical velocity becomes smaller there than at any point of the y = 0 plane
located outside the gap. For instance the velocity at the point (d/2 − R, 0, 0) on the
bubble surface is about 0.33U∞ for S = 2.5 at Re =0.1 (resp. 0.42U∞ for S = 4), while
it is about 0.51U∞ at the same Reynolds number for an isolated bubble (Legendre &
Magnaudet 1998).
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Figure 9. Iso-contours of the normalized vorticity ωz = R/U∞(∇ × V ) · ez in the symmetry
plane z = 0. The difference between two successive iso-contours is �ωz = |ωz|max/10.

The explanation of this evolution may be found in figure 9 where the distribution
of the vorticity ωz in the symmetry plane z = 0 is shown for the separation S = 4. After
it is generated on the bubble surface by the shear-free condition, vorticity diffuses
around the bubble and is advected downstream in the wake. At large Reynolds
number (Re =300 in figure 9), the distribution of ωz is almost symmetric with respect
to the symmetry plane x = 0 (dotted line on figure 9). Hence at leading order the
second bubble does not affect the vorticity distribution and the iso-contours would
be almost identical to those shown in figure 9 if the bubble were alone (however note
that there is a tiny difference in the shape of the iso-contours at about y = −4.5).
Because of this almost symmetrical vorticity distribution, we may infer that most of
the asymmetry of the velocity field observed in figure 8(b) at this Reynolds number is
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Figure 10. Drag ratio CD(Re, S)/CD∞. �, S = 2.25; �, S = 2.5; �, S = 3; �, S = 4;
�, S = 5; ∗, S = 6; +, S = 10.

due to the irrotational mechanism described in § 3.4. Therefore the interaction force is
certainly negative, as predicted by potential flow theory. When the Reynolds number
decreases, the asymmetry between the iso-contours of ωz becomes more prominent
(Re =20). At low Reynolds number (Re = 1 and 0.1), the iso-contours located near the
symmetry plane x = 0 flatten dramatically. It is then clear that the diffusion of ωz is
blocked by the second bubble, making the vorticity distribution strongly asymmetric.
In the frame of reference moving with the bubble, the vorticity generated at the surface
induces upward velocities which lower the downward irrotational contribution. As
the iso-contours of the vorticity are tightened in the gap by the presence of the second
bubble, these upward velocities reach their maximum in this region, resulting in a
minimum of the overall vertical velocity as we saw in figure 8. Hence the pressure
gradient is now directed towards the symmetry plane x = 0 and the transverse force
is repulsive.

6. Hydrodynamic forces at finite Reynolds number
6.1. The drag force

To appreciate the modification of the drag force due to the hydrodynamic interaction,
we compare the drag coefficient CD(Re, S) with the drag coefficient of a single
bubble rising at the same Reynolds number, i.e. CD∞ = CD(Re, S → ∞). The drag ratio
CD(Re, S)/CD∞ is plotted in figure 10, which clearly shows that the effect of the
interaction depends on both separation and Reynolds number. We first note that,
while the interaction increases the drag for Reynolds numbers larger than 5 to 10, it
decreases it for smaller Reynolds numbers. These trends are in qualitative agreement
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with the asymptotic expressions (8) and (12a). At large Reynolds number we see that
a significant increase (larger than 5%, say) of the drag force due to the interaction
occurs only for small separations, typically S � 3. In contrast, the interaction effect
extends over larger distances at low Reynolds number; for instance a decrease of
the drag by the same amount of 5% is observed for S ≈ 8. Note that the opposite
variations of the drag force observed in the low- and high-Reynolds-number limits
imply that for each separation S there is a limit curve ReD(S) along which both effects
cancel exactly, so that CD(ReD , S) = CD∞(ReD) (this curve appears in figure 17a below,
where it can be observed that the larger the separation S, the smaller the value of
ReD; for instance we find approximately ReD ≈ 10 for S = 2.5 and ReD ≈ 1.5 for
S = 10).

In the high-Reynolds-number regime, the drag force on a single spherical bubble,
correct to O(Re−3/2), was given by Moore (1963) as

CD(Re) =
48

Re

(
1 − 2.21

Re1/2

)
+ O

(
Re−5/6

)
. (15)

The leading term in (15) is identical to that in (8) in the limit S → ∞. This term
corresponds to the drag experienced by a spherical bubble moving in a viscous
potential flow with an infinitely thin sheet of vorticity at the bubble surface. The
second-order term in (15) is due to finite-Reynolds-number effects. More precisely,
it accounts for the presence of a boundary layer of finite thickness and a thin wake
behind the bubble. Compared with the ‘potential’ prediction, these two vortical regions
are found to decrease the dissipation in the fluid because vorticity reduces velocity
gradients near the bubble surface. The leading-order effect of the interaction on the
contribution to the drag force due to the boundary layer and wake may easily be
found by the following reasoning. In the irrotational approximation, the flow about
the bubble centred at x = d/2, y = z =0 is obtained by placing a dipole of strength
−1/2 at this point, while the symmetry condition on the plane x = 0 is satisfied by
placing a dipole of similar strength at the image point x = −d/2, y = z =0. Expanding
the velocity field produced by this image dipole in the vicinity of the original bubble
immediately shows that its leading-order term is −S−3/2ey . Hence the bubble feels a
vertical velocity equal to −U∞(1 + S−3/2)ey +o(S−3), so that the potential and vortical
disturbances in the velocity field are multiplied by 1 + S−3/2 + o(S−3). Now, since
the rate of work FD · U∞ey of the drag force FD is just balanced by the dissipation
in the whole volume of fluid that surrounds the bubble (Batchelor 1967, p. 368), we
see that compared to the case of an isolated bubble, this dissipation is multiplied
by 1 + S−3 + o(S−3), being a quadratic function of the velocity gradients. Thus we
conclude that the leading-order effect of the interaction on the drag force is to multiply
Moore’s expression (15) by 1 + S−3 (note that S−3 is indeed the leading-order term
in the function g(S) given in (8)). Figure 11, for Reynolds numbers larger than 20,
compares the difference CDblw = 48(1 + g(S))/Re − CD(Re, S) between the ‘potential’
prediction (8) and the actual drag coefficient CD(Re, S) with Moore’s correction
48 × 2.21/Re3/2 multiplied by 1 + S−3. The agreement is found to be very satisfactory
whatever the separation distance as long as the Reynolds number is larger than
30. Note however that, since the contribution of the S−3 factor in CDblw is always
less than 10% (with CDblw itself being less than 20% of CD(Re, S) for Re > 50),
its influence is hardly seen in figure 11. Despite this limitation, figure 11 and the
theoretical argument given above allow us to write an improved expression for the
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Figure 11. Effect of the boundary layer and wake on the drag force at moderate-to-large
Reynolds number. �, S = 2.25; �, S = 2.5; �, S = 3; �, S = 4; �, S = 5; ∗, S = 6; +, S = 10;
——, analytical prediction 2.211 × 48(1 + S−3)/Re3/2.

drag force in the moderate-to-large Reynolds number regime in the form

CD(Re, S) ≈ 48

Re

(
1 + g(S) − (1 + S−3)

2.211

Re1/2
+ O

(
Re−5/6

))
, (16)

with g(S) given in (8).
As we saw above, the decrease of the drag force due to the interaction is significant

over a wide range of separations at low-to-moderate Reynolds number. Moreover
figure 10 shows that this decrease is almost independent of the Reynolds number
for Re < 0.2. To study the low-Re behaviour of the drag force in more detail, we
introduce the function

h(Re, S) = CD(Re, S)/CD∞(Re),

with CD∞(Re) as defined above. According to the prediction (12a), h(Re, S) should
tend towards

h1(Re, S) =
(
1 + Re/8 − e−Re S/4/2S

)/
(1 + Re/8)

when the conditions S−1 � Re � 1 are satisfied. Similarly, according to (14a), it should
tend towards

h2(Re, S) = [(1 + (2S)−1) (1 + Re/8)]−1

when Re � S−1 � 1. The numerical values of h(Re, S) are plotted in figure 12 for
Reynolds numbers up to 0.2. Values corresponding to Re = 0.2 are found to be
in excellent agreement with the prediction (12a) whatever S, whereas they are
underpredicted by (14a) because the constraint Re � S−1 is not satisfied. Conversely,
for Re = 0.02, we see that (12a) underpredicts the effect of the interaction for all S

because the constraint S−1 � Re is never satisfied. At this Reynolds number, (14a) is
found to predict accurately h(Re, S) for S < 4, approximately.
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Figure 12. Drag ratio h(Re, S) = CD(Re, S)/CD∞(Re) at low Reynolds number. �, Re= 0.02;
�, Re= 0.05; �, Re= 0.1; �, Re= 0.2. ——, h1(Re= 0.02, S) as predicted by (12a); · · · · · ·,
h1(Re= 0.2, S) as predicted by (12a); – – – – –, h2(Re= 0.02, S) as predicted by (14a); — —,
h2(Re= 0.2, S) as predicted by (14a).

6.2. The transverse force

Figure 13 displays the evolution of the lift coefficient CL in the range 0.02 �
Re � 500, 2.25 � S � 10. The most striking feature revealed by this plot is that
for any separation distance the sign of the transverse force is reversed when the
Reynolds number crosses a certain critical value Rec. This value depends on S and
lies approximately in the range 30 � Rec � 100 for the range of separations covered
here. Conversely, one may define a critical separation Sc(Re) at which the transverse
force changes sign. This reversal was to be anticipated given the opposite signs of
the lift coeffcients predicted by irrotational flow theory (7), and viscous theory ((12b)
and (14b)). On figure 13 one also notices that |CL| reaches significantly larger values
for Re → 0 than for Re → ∞. As the Reynolds number increases, numerical results
tend asymptotically towards the irrotational prediction (7). For instance, for S = 3,
the relative difference between the numerical value CL(Re, S) and the prediction (7)
decreases monotonically from 59% at Re =50 to 7.5% at Re =500.

It is of some interest to examine separately the evolution of the contributions due
to the normal viscous stress (CLµ) and pressure (CLp) in the total lift coefficient.
These contributions are shown in figure 14 for S = 3 (their evolutions are qualitatively
similar for other separations). For Reynolds numbers larger than ReC , the pressure
contribution is negative (i.e. attractive) when the viscous contribution is positive but
has a negligible magnitude. More precisely, the relative contribution of CLµ to the
total lift coefficient found for S = 3 is about 2.4% at Re= 100 and decreases to
0.2% at Re = 500. At such Reynolds numbers, the effects of the vorticity on the
lift force are almost entirely contained in the pressure lift coefficient CLp , since this
contribution differs from the irrotational prediction (7) by about 8% for Re =500 and
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Figure 13. Lift coefficient CL vs. Re for various separations. �, S = 2.25; �, S = 2.5;
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Figure 14. Contribution of pressure and normal viscous stress to the total lift force (S = 3).
�, CLp; �, CLµ; ——, CL = CLp + CLµ.

this difference increases up to 37% for Re =100. As the Reynolds number decreases
in the range Re <Rec, the magnitude of the repulsive contribution CLµ increases while
the pressure contribution CLp itself becomes repulsive and increases in magnitude.
The transverse force is then repulsive. Note that the ratio CLµ/CLp tends towards a
constant value larger than unity at low Reynolds number.
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Figure 15. Effects of vorticity on the lift force at large Reynolds number. Numerical values
of Re�CLvort for: �, Re= 500; �, Re= 300; �, Re= 100; �, Re= 50; �, Re= 40; ∗, Re= 30;
+, Re= 20; ——, Re�CLvort =240S−4.

To quantify the effects of the vorticity on the transverse force in the high-Reynolds-
number regime we may consider the correction �CLvort = CL − CLpot where CLpot

corresponds to the irrotational prediction (7). Let us first discuss the scaling law
followed by this correction. As we saw above, the leading-order velocity disturbance
produced by the image dipole in the vicinity of the original bubble (i.e. near x = d/2,
y = z = 0) is −S−3/2ey . The next term of this disturbance may be shown to be a
strain field 3S−4/2(xey + yex). Hence the first asymmetry with respect to the plane
x = d/2 in the flow about the bubble occurs at O(S−4). This asymmetry is the source
of the O(S−4) leading-order term in (7). Clearly, it also results in an asymmetry
of the vorticity distribution about the bubble. By an order-of-magnitude analysis
similar to that of Moore (1963), it may be shown that the leading-order pressure
correction associated with this O(S−4) vortical velocity is of O(Re−1S−4), the next
term in the expansion with respect to Re being of O(Re−3/2S−4). Hence we expect
the leading-order vortical correction �CLvort to the lift coefficient to be proportional
to S−4Re−1 at large enough Reynolds number. Figure 15 displays the evolution of
the quantity Re�CLvort versus the dimensionless separation S for 20 � Re � 500. In
line with the above reasoning, we see that this quantity is almost proportional to S−4

for S � 3, the value of the corresponding prefactor being about 240. A more careful
examination shows that the values of Re�CLvort follow a slightly different evolution
when the Reynolds number is below 102, the slope of the corresponding curve then
being somewhat weaker than −4; we shall come back to this point in the next section.
Similarly, some deviations are encountered for small separations (say S < 3). Given
the smallness of the corresponding quantities, it is difficult to determine precisely
the variations of Re�CLvort − 240S−4 with S. Nevertheless it seems that this quantity
evolves proportionally to S−6. Hence we conclude that for Re � 30 and S � 3, the lift
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Figure 16. Lift coefficient in the low-Reynolds-number regime: �, Re= 0.02; �, Re= 0.05;
�, Re= 0.1; ——, prediction (12b) for Re= 0.1; · · · · · ·, prediction (12b) for Re= 0.02.

coefficient may approximately be written as

CL(Re, S) ≈ −6S−4

[(
1 − 40

Re
+ O

(
Re−3/2

))
+ S−3 + O(Re−1S−2, S−5)

]
. (17)

We now turn to the asymptotic behaviour of the lift coefficient in the low-Reynolds-
number regime. Coming back to figure 13, we see that, for Re < 0.1, CL tends towards
values that increase slightly with S and are almost independent of the Reynolds
number. To study this regime in more detail, we performed numerical simulations at
three Reynolds numbers (Re= 0.1, 0.05 and 0.02) over a wide range of separations
(2.25 � S � 100). The corresponding values of CL are plotted in figure 16. The lift
coefficient is seen to reach a maximum value of about 0.8 for S ≈ 10 at each Reynolds
number. For smaller separations, CL decreases slightly and extrapolation of the
numerical results towards the limit S → 2 where the two bubbles come in contact
suggests a limit value about 0.6. These numerical results may be compared with
the analytical predictions (12b) and (14b). For Re =0.1, the constraint S−1 � Re
is approximately satisfied for S > 20. Not surprisingly, we observe that for such
separations the corresponding numerical values follow the evolution predicted by
(12b) (with however a slightly larger slope). In contrast, for Re =0.02, the above
constraint is never satisfied for S < 100 and (12b) is found to overpredict severely the
lift coefficient. It is worth noting that CL keeps significant values at large separations.
For instance one sees that, for S = 75, CL lies in the range 0.21–0.33, depending on Re,
and these values correspond to 25% to 40% of the maximum value reached at S = 10.

The complementary asymptotic limit Re � S−1 is approximately reached for S � 5
(resp. S � 25) in the case Re = 0.1 (resp. Re = 0.02). In this regime, the numerical
values of CL lie between 0.6 and 0.84, depending on the separation. From (14b) we
expected these values to be about unity, especially those corresponding to Re = 0.02
and S � 5 for which the O(S−2) corrections are thought to be small. The reason why
the lift coefficient remains 15% to 20% smaller than the theoretical limit derived in
the Appendix is unclear and is currently being investigated. It might be due to higher-
order corrections neglected in the derivation of (14b), as suggested by the collapse
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of the numerical points for S < 10. However, we cannot exclude a possible numerical
inaccuracy, since the transverse force is very small compared to the drag in this regime.
For instance one may see that for Re = 0.02 and S = 5, the correction experienced by
the drag coefficient due to the interaction process, i.e. �CD = CD∞(Re)(1 − h2(Re, S))
(see figure 12), is about 75, so that an error of 0.2 on CL is less than 0.3% of �CD . To
ensure that the numerical results are not influenced by artificial confinement effects,
we increased the size of the computational domain from R∞/R = 100 (see § 3.2) up to
R∞/R =200. This did not produce any change in the values of CL.

6.3. The equilibrium position

We saw in figure 13 that the transverse force changes sign for a critical Reynolds
number Rec(S) whatever the separation S. Figure 17(a) shows how the sign of this
force evolves in the plane (Re, S); the critical curve corresponding to CL =0 was
obtained by a linear interpolation of the values of CL found in the computations.
Note that the vertical axis of this plot involves the quantity S − 2 because this choice
is more appropriate to discuss the limit S → 2 where the two bubbles come in contact.
According to figure 17(a), the transverse force is always repulsive when the Reynolds
number is lower than a critical value ReREP ≈ 28 corresponding to an equilibrium
separation distance Sc(ReREP) ≈ 3 (note that this is consistent with the low-Reynolds-
number prediction (12b) according to which the transverse force is repulsive in this
regime, however large S). The critical Reynolds number for which CL vanishes is
found to lie between 30 and 40 for 2.5 � S � 8. It is worth noting that in their recent
experimental study of the transverse force acting on a clean spherical bubble rising
near a vertical wall, Takemura & Magnaudet (2003) found that this force changes
sign when the rise Reynolds number is in the range 30–45, for separations such that
3 � S � 8. Despite the difference between the boundary condition on a rigid wall and
that on the symmetry plane considered here, the agreement between the experimental
values of the critical Reynolds number and those found in figure 17(a) is noteworthy.
The surprising feature of figure 17(a) is that for Reynolds numbers larger than
ReREP and separation distances in the range considered here (i.e. 2.25 � S � 20), the
critical curve indicates the existence of two equilibrium positions. For instance, the
transverse force is found to vanish for both SC ≈ 2.5 and ≈ 8 at Re =50. This complex
behaviour appears to be related to finite-Re effects not accounted for properly in (17)
(see below). To study the stability of the two equilibrium positions, it is convenient to
consider the trajectory that a freely moving bubble may follow in the (Re, S)-plane.
Since such a bubble moves under the effect of buoyancy, the vertical drag force it
experiences is constant all along its path. Equivalently we may say that the quantity
Re2CD(Re, S) remains constant, this constant being determined by the value of the
Galileo number Ga = gR3/ν2, g denoting gravity. The iso-drag curves determined
using (16) are plotted in figure 17(b) together with the critical curve CL = 0. From
this plot it is clear that only the smallest of the two equilibrium values of S, S1 say,
corresponds to a stable position, because if the separation distance between the two
bubbles is increased (resp. decreased) slightly above (resp. below) S1, the transverse
force becomes attractive (resp. repulsive), leading to a decrease of the difference
|S − S1|. In contrast, any deviation of S from the largest equilibrium value S2 tends
to increase the difference |S − S2|.

As our computations cover a limited range of separations, we cannot directly
determine the asymptotic branches of the critical curve Rec(S) in the limit of both
large (S → ∞) and small (S → 2) separations. However, we may notice that for S < 3
the computational results show that Rec increases when the separation decreases.
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Figure 17. Sign of the interaction force in the (Re, S) plane. (a) �, Bubbles are attracted
towards each other; �, bubbles are repelled from each other; —– critical curve corresponding
to CL = 0; – – – –, limit curve corresponding to CD(Re, S) = CD∞(Re); · · · · · ·, critical curve
corresponding to CL = 0 for two rigid spheres (Kim et al. 1993). (b) ——, Iso-drag curves;

, S = S1(Re); , S = S2(Re). The grey area corresponds to the sub-region of initial
separations Si for which the bubbles subsequently separate up to infinity, while the white area
is the basin of attraction of the stable equilibrium position S = S1(Re).

More precisely, they indicate that the slope of the curve Sc(Re) is about −2 (resp.
−1) for 2.5 � S � 3 (resp. 2.25 � S � 2.5). While we cannot settle the matter definitely
because lubrication effects certainly appear when S → 2, these results suggest that
the critical Reynolds number Rec tends to infinity when the two bubbles come in
contact.
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It is even more difficult to determine how Rec evolves with S in the opposite limit
S → ∞ because the interaction force then tends to zero. We saw in § 3.4 that for large
Reynolds numbers the accuracy of our computations can be considered sufficient
only up to separations S ≈ 20, which prevents us from drawing a clear conclusion
by running computations for larger values of S. Examining figure 17(a) for large S,
the only obvious feature is that for a given separation the transverse force becomes
attractive for high enough Re. However, a better understanding of the increase of
Rec with S in the limit S → ∞ is provided by (12b) and (17). While (17) shows that
CL decays as S−4 for S → ∞ at high enough Reynolds number, (12b) indicates that in
the low-Re regime and for a given Re, the transverse (repulsive) force decays as S−2

at large S. Hence one may suspect that for moderate Reynolds number, i.e. for Re
typically in the range 10–102, finite-Re effects at large S have a repulsive contribution
proportional to S−m with 2 < m < 4, the value of m being Re-dependent and tending
towards m =4 at large Re, to yield the contribution 240 S−4Re−1 found in figure 15.
The existence of this repulsive S−m contribution explains why, in the range of Rec

corresponding to the range of S covered by our computations, the critical Reynolds
number is found to increase with S at large separations. However, if S becomes very
large, this tendency will make Rec increase sufficiently for (17) to become applicable.
Hence we guess that for very large separations, Rec should be a constant, the value
of which is determined by the vanishing of the whole S−4 term of (17). Note that
considering only the leading-order vortical correction in (17) yields Rec ≈ 40 in the
limit S → ∞, which clearly underpredicts Rec. This suggests that the next O(Re−3/2S−4)
term has a substantial prefactor that makes it contribute significantly to the value of
Rec(S → ∞).

Collecting all the above information, the following picture emerges. If two clean
spherical bubbles initially separated by a dimensionless distance Si and having a
sufficiently large Galileo number (so that their rise Reynolds number exceeds ReREP)
are released with their line of centres horizontal, then depending on Si being larger
or smaller than S2(Ga), they will either move apart from each other up to infinity or
will move towards or apart from each other until they reach the stable equilibrium
position S = S1(Ga). In contrast, if the Galileo number is too small for Re to exceed
ReREP, they will be repelled from each other up to infinity whatever Si . The subdomain
corresponding to values of Si for which the two bubbles move apart from each other
to infinity is coloured grey in figure 17(b). In figure 17(a) we also report the critical
curve CL = 0 that can be determined from the numerical results of Kim et al. (1993)
for two rigid spheres settling side by side. These authors explored a more narrow
range of Re and S than we did but their results clearly show that the transverse force
becomes attractive when the Reynolds number exceeds some critical, S-dependent,
value. The existence of such a critical Reynolds number for both bubbles and rigid
spheres strongly suggests that the process leading to the force reversal is qualitatively
similar in both cases. As we saw in § 6.2, the sign of the transverse force acting on a
pair of bubbles is governed by the competition between the irrotational mechanism
associated with the asymmetrical deflection of the fluid between and around the
bubbles and the wake/boundary layer phenomena resulting from the asymmetric
generation, diffusion and transport of vorticity around them. This picture is general
and applies to rigid particles as well as to bubbles; only the amount of vorticity
generated on the particle surface differs between the two types of particles. As more
vorticity is generated on a rigid sphere than on a spherical bubble for a given Reynolds
number, the subdomain of the (Re, S)-plane where the transverse force is repulsive is
larger in the former case.
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7. Summary and conclusions
In this paper we have studied numerically the interaction between two clean

spherical bubbles rising side by side in a viscous fluid at rest at infinity. We explored a
wide range of Reynolds number in order to describe situations dominated by viscous
effects as well as nearly inviscid cases. As the transverse force is generally small
compared to the drag component, a careful preliminary check of the numerical
accuracy was necessary. Analytical results available in the potential flow limit
were extensively used for this purpose and an excellent agreement with theoretical
predictions was found for the stationary drag and lift forces as well as for the added-
mass force, up to dimensionless separations at which the effect under consideration
becomes very small.

As is well known, the acceleration of the flow in the gap separating the two
bubbles yields an attractive interaction force in the potential flow limit. In contrast,
our analytical extension of Vasseur & Cox’s (1977) result to a pair of shear-free
bubbles shows that this force is repulsive in the low-Reynolds-number limit because
the vorticity produced at the bubble surfaces induces upward velocities, thus resulting
in vertical velocities in the gap smaller than the rising speed. The computational
results confirmed the role played by the vorticity produced at the bubble surface,
even at moderate-to-high Reynolds number. In particular they showed that bubbles
with a Reynolds number lower than a critical value ReREP of the order of 30 are
repelled however large their initial separation Si , while at higher Reynolds number
bubbles are repelled from each other up to infinity only if they are released with
a separation Si larger than a critical value S2(Re). In the opposite case where Si is
smaller than S2(Re), bubbles tend to reach an equilibrium configuration corresponding
to a separation S = S1(Re) with S1(Re) < S2(Re), S1(Re) being a decreasing function
of the Reynolds number, which is about 3 (corresponding to a gap thickness about
one bubble radius) for Re =30. We note that this behaviour is not specific to bubbles,
having also been observed at sufficiently large values of Re and S for rigid spheres
by Kim et al. (1993).

Overall, the present results indicate that interaction effects arising between two
clean spherical bubbles rising side by side at Reynolds numbers less than say 250
(i.e. the upper limit for which deformation effects may be reasonably neglected in
pure water) are not satisfactorily described in the classical framework of potential
flow theory since this theory predicts that the interaction force is attractive whatever
S. In particular these results question the applicability in the above range of Re of
the ‘direct’ potential computations performed by Sangani & Didwania (1993) and
Smereka (1993) for a cloud of spherical bubbles rising under the effect of buoyancy
in a periodic box. In contrast with the systematic formation of stable horizontal
clusters observed in those simulations, the existence of a repulsive interaction force
for small-to-moderate rise Reynolds numbers and of an equilibrium (admittedly small)
separation distance for higher Reynolds numbers favours a more homogeneous spatial
distribution of the bubbles. We indeed found that the interaction force is positive
for Re larger than 50–100 (depending on S), so that horizontal clustering is likely to
occur in the range 100 � Re � 250. However, the actual attractive force is significantly
smaller than predicted by irrotational theory, indicating that the clustering process
requires a longer time than found in the aforementioned irrotational computations.

For Reynolds numbers higher than those covered by the present study, deformation
can no longer be neglected and the oblateness of the bubbles has to be taken into
account. Associated with this increased curvature of the bubbles near their equator
is an increased generation of vorticity on their surface which yields an instability of
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the wake for bubbles with an aspect ratio larger than about 2, corresponding to rise
Reynolds numbers larger than 600, approximately. It was recently shown (Mougin
& Magnaudet 2002b) that this wake instability is the cause of the zigzagging/
spiralling motion of clean millimetric bubbles rising in low-viscosity liquids. As these
additional horizontal motions significantly increase the agitation in the surrounding
liquid, several authors are currently exploring the possibility that they may explain
why the horizontal clustering predicted by the irrotational flow model is not detected
experimentally. This idea follows from the statistical arguments presented by
Yurkovetsky & Brady (1995) and Spelt & Sangani (1998) who showed that the larger
the r.m.s. velocity fluctuations of the liquid relative to the rise velocity, the smaller
the tendency for horizontal clusters to form. If this effect of horizontal motions is
confirmed, it would mean that vorticity effects play a crucial role in the dynamics of
bubbly suspensions over the whole range of Re corresponding to spheroidal bubbles,
since on the one hand they produce a repulsive force in the low-to-moderate Re
regime, and on the other hand are responsible for the high-Re wake instability by
which zigzagging/spiralling motions preventing clustering are generated.

Coming back to spherical bubbles, we note that the fact that finite-Re effects favour
a more homogeneous distribution that predicted by irrotational theory is not limited
to the side-by-side configuration. Indeed the same was observed in the computations
of Yuan & Prosperetti (1994) for two bubbles rising in line, as these authors found
that wake effects result in the existence of an equilibrium separation distance ranging
from S ≈3 for Re = 50 to S ≈ 6 for Re= 200. Expressions (16) and (17) may be seen as
the starting point of a realistic model of steady and quasi-steady hydrodynamic forces
experienced by interacting bubbles moving at moderate-to-high Reynolds number, as
they take into account inviscid interaction effects, high-Reynolds-number corrections
due to vorticity in the boundary layer and wake of each bubble, and the leading-order
interaction between both effects. Of course it would be helpful to derive analytically
the numerical prefactor of the S−4Re−1 term in (17) by solving the boundary layer
equations in the asymmetric situation considered here. As the present investigation
only considered the particular case of two bubbles rising at a right angle to their
line of centres, it would also be of interest to generalize the present approach by
examining how the leading-order vortical corrections derived here change with the
angle θ between the line of centres and the direction of rise (in the potential flow
limit, this general situation was considered by Kok (1993a) who obtained closed-form
expressions for the changes in the drag and lift forces due to interaction effects).
Given the results of Yuan & Prosperetti (1994) for the in-line configuration (θ = π)
and the present ones for the side-by-side configuration (θ = π/2), we guess that an
equibrium surface Sc(Re, θ) exists whatever θ . We believe that exploring how Sc

evolves with θ and developing general approximate expressions for the hydrodynamic
forces acting on a pair of bubbles in the moderate-to-high Reynolds number regime
would open new possibilities for obtaining realistic, relatively low-cost, descriptions
of the concentrated bubbly suspensions involved in many applications.

Appendix. The drag and lift coefficients in the limit Re � S−1 � 1

In this appendix we derive the low-Reynolds-number expression for the drag and
lift forces acting on a pair of bubbles filled with a gas of negligible viscosity in the
asymptotic limit where the second bubble lies in the inner (Stokes) region of the
disturbance produced by the first one, the separation between the two bubbles being
large compared to their radius. Distances are made dimensionless using the bubble
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radius R, while velocities are normalized by the rise velocity U∞. We choose a system
of axes translating with the bubbles, with the origin x1 = x2 = x3 = 0 at the centre
of one of them (say B 1), x1 being directed away from the second bubble (say B 2)
and x2 directed vertically upwards; the corresponding unit vectors are e1, e2 and e3,
respectively. Note that with these choices B 2 is centred at x1 = −S, x2 = x3 = 0 and
the upstream velocity is −e2. At leading order, the velocity field U (0) about the two
bubbles is obtained by inserting two Stokeslets of strength 1/2 at the bubble centres,
namely

U (0) = −e2 +
1

2

( e2

r
+

x2x
r3

)
+

1

2

(
e2

r∗ +
x2 (x + Se1)

r∗3

)
, (A 1)

where x = x1e1 + x2e2 + x3e3, r = (x2
1 + x2

2 + x2
3 )

1/2 and r∗ = ((x1 + S)2 + x2
2 + x2

3 )
1/2.

The velocity field U (0) satisfies Stokes equations everywhere in the liquid, is symmetric
with respect to the plane x1 = −S/2 and tends towards the undisturbed velocity
−e2 at infinity. Combined with this undisturbed velocity, each of the two Stokeslets
would also satisfy the impermeability and shear-free conditions on the corresponding
bubble if this bubble were alone. However the resulting velocity U (0) does not satisfy
these two conditions because each Stokeslet creates a disturbance near the other
bubble. Assuming that S/2 � 1, we can expand the velocity field due to the Stokeslet
corresponding to B2, say U∗, in the vicinity of B 1. This yields

U∗(r/S � 1) = 1
2
S−1e2 − S−2(x1e2 − x2e1) + O(S−3). (A 2)

Thus we see that the boundary conditions are satisfied on B 1 (resp. B 2) up to O(S−2)
provided we introduce a new Stokeslet of strength − 1

4
S−1 at the origin (resp. at

x1 = −S, x2 = x3 = 0). In other words, the velocity correction U (c) to be added to U (0)

at O(S−1) to satisfy the boundary conditions on the two bubbles is

U (c) = −S−1

4

[( e2

r
+

x2x
r3

)
+

(
e2

r∗ +
x2(x + Se1)

r∗3

)]
+ O(S−2). (A 3)

We note that the O(S−2) term in (A 2) is a solid-body rotation which does not
induce any additional stress, i.e. no stresslet is required to satisfy the zero-shear-
stress condition at O(S−2), unlike what happens for a bubble rising near a rigid
wall (see Magnaudet et al. 2003). Similarly, it can be proved that higher-order
singularities associated with terms of O(S−n) (n � 3) in the expansion of U∗ near B 1
do not involve any Stokeslet, being only Stokes quadrupoles, octupoles, etc. However,
the reflection of these higher-order singularities on B 2 necessarily induces constant
velocity corrections near B 1, and hence new Stokeslets at O(S−2n). On the other
hand, repeating the above reasoning shows that the Stokeslet of strength − 1

4
S−1 at

B 2 requires a new Stokeslet of strength 1
2
(− 1

2
S−1)2 at B 1, etc. Neglecting Stokeslets of

O(S−2n) with n � 3 resulting from the reflections of higher-order singularities, it turns
out that the total strength of the Stokeslets produced by the successive reflections of
the initial Stokeslet of strength 1/2 is

1
2

[
1 − 1

2
S−1 +

(
1
2
S−1

)2 −
(

1
2
S−1

)3
+ ...

]
=

1

2 + S−1
. (A 4)

As we know from the Hadamard–Rybczyinski formula that a Stokeslet of strength
1/2 corresponding to an isolated bubble yields a drag coefficient CD = 16/Re, we
conclude that the drag coefficient of a pair of bubbles moving perpendicular to their
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line of centres is, in the present asymptotic limit,

CD(S) =
16

Re

[
1

1 + (2S)−1
+ O(S−6)

]
. (A 5)

This result shows that the low-Reynolds-number interaction process decreases the
drag force, compared to that experienced by an isolated bubble. In particular, in the
limit where the two bubbles come in contact (S = 2), (14) suggests that the drag force
is approximately 4/5 of that acting on a single bubble.

To obtain the lift force in the same asymptotic limit, we first consider the auxiliary
Stokes problem corresponding to the flow generated by two bubbles centred at
x1 = x2 = x3 = 0 and x1 = −S, x2 = x3 = 0, respectively, and moving with opposite
velocities of unit magnitude along their line of centres. The leading-order velocity
field u(0) corresponding to this situation is clearly

u(0) = −e1 +
1

2

( e1

r
+

x1x
r3

)
− 1

2

(
e1

r∗ +
x1(x + Se1)

r∗3

)
. (A 6)

As required by the symmetry of the problem, the tangential velocity is zero on the
plane x1 = −S/2, while the normal velocity is −1, owing to the unit x1-translation
of the coordinate system. Expanding the velocity field due to the second Stokeslet in
(A 6), say u∗, in the vicinity of the first bubble, we obtain

u∗(r/S � 1) = −S−1e1 + O(S−2). (A 7)

Thus, up to terms of O(S−2), the velocity correction u(c) to be added to u(0) in order
to satisfy the impermeability and shear-free conditions on the two bubbles is merely

u(c) =
S−1

2

[( e1

r
+

x1x
r3

)
−

(
e1

r∗ +
x1(x + Se1)

r∗3

)]
+ O(S−2). (A 8)

Let us now consider the velocity fields U = U (0) + U (c) (given by (A 1) and (A 3))
and u = u(0) + u(c) (given by (A 6) and (A 8)). Up to corrections of O(S−2), these are
the solutions of the Stokes equations for the ‘direct’ problem of two bubbles rising
side by side and for the ‘auxiliary’ problem of two bubbles moving with opposite
velocities along their line of centres, respectively. Then, provided the distance between
each bubble and the symmetry plane x1 = −S/2 is smaller than the Oseen radius
Re−1, i.e. the condition Re� S−1 is satisfied, it is known since the work of Cox &
Brenner (1968) that O(Re) inertial effects can be evaluated using the above Stokes
solutions only, without having to consider the contributions of the corresponding
outer expansions. Then, using the reciprocal theorem (see e.g. Magnaudet et al. 2003
and references therein) the lift coefficient correct up to corrections of O(S−2) is given
by

CL = − 2

π

∫
VF

(u + e1) · (U · ∇)U dV, (A 9)

where VF denotes the entire volume of liquid corresponding to the half-space x1 >

−S/2. To evaluate the volume integral in (A 9) it is convenient to re-express u and U
using the outer variables xi = 2S−1xi(i = 1, 3), r = 2S−1r and x = x1e1 + x2e2 + x3e3.
Then, taking into account the transformations ∇ ≡ 2S−1∇ and dV ≡ 1

8
S3 dV̄ , (A 9)
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becomes

CL =
1

2π

(
1 +

1

2
S−1

)∫
VF

ūSto · (e2 · ∇̄)ŪSto dV̄

︸ ︷︷ ︸
I

−S−1

2π

∫
VF

ūSto · (ŪSto · ∇̄)ŪSto dV̄
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J

+ O(S−2),

(A 10)

where VF denotes the entire half-space x1 > −1 and ŪSto and ūSto are given by

USto =

(
e2

r
+

x2x
r3

)
+

(
e2

τ
+

x2(x + 2e1)

τ 3

)
,

uSto =

(
e1

r
+

x1x
r3

)
−

(
e1

τ
+

x1(x + 2e1)

τ 3

)
,

with τ = (x2
2 + x3

2 + (x1 + 2)2)1/2.
The two integrals in (A 10) may first be reduced to double integrals by setting

x2 = ρ cos ψ, x3 = ρ sin ψ and integrating analytically with respect to ψ, which in
both cases yields a factor of π. The resulting double integrals can be evaluated using
contour integration. To save time we chose to evaluate them numerically with an
accuracy of three digits. The resulting values are I = 2π, J = π, from which we obtain

CL = 1 + O(S−2). (A 11)
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